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ABSTRACT 

Center-of-mass coordinates  are  employed to determine the  dependence 

of energy and other physical  properties of sys tems with three Coulombic 

par t ic les  (two identical)  on the  masses  of the  par t ic les .  N o  ad iaba t ic  ap-  

proximation is needed , s ince  the  non-relativist ic and sp in  free Hamiltonian with the  

exact m a s s  dependence is used  in the var ia t ional  problem. The total  angular momentum 

of the  par t ic les  is quant ized to unity. Both symmetry states with the  space-z-  

component of angular momentum MZ = 0 a re  considered.  The computations cover  

the  ent i re  range of the mass ratio as well  as  severa l  different charges  of the  

pa r t i c l e s .  In most cases the  energies  obtained are  either the  lowes t  ye t  found 

' ~ 6 5  88555 or the  f i r s t  to be reported.  
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I. INTRODUCTION 

Over t h e  past few years t h e r e  have appeared severa l  papers cn 

t h e  quantum mechanical three-body problem i n  which t h e  exact dependence 

of t h e  Hamiltonian on t h e  masses has been properly taken i n t o  

The i n t e r e s t  i n  t h i s  problem has been aroused by t h e  need fo r  a more 

d i r e c t  approach i n  describing a system of t h r e e  particles of near ly  equal 

masses, s ince  t h e  usual approximation of i n f i n i t e l y  heavy ( s t a t iona ry )  

nuclei  obviously cannot be made. If a l l  t h e  p a r t i c l e s  are t o  be allowed 

t o  move t h e  nonre l a t iv i s t i c  and sp in  free Hamiltonian of t he  system i s  

expressed i n  terms of center-of-mass coordinates, and the  Schrudinger 

equation becomes separable in to  two parts, t h e  one describing the motion 

of  t h e  p a r t i c l e s  around t h e  center of mass being t h e  only one of i n t e r e s t  

here. 

l a r - l i k e  systems ( the  paper by Kolos, et al, with i t s  treatment of t h e  

ground state of atomic helium being the only exception).  

lar momentum states t h e  wavefunctions depend only on t h e  r e l a t i v e  c o r -  

f igura t ion  of t h e  p a r t i c l e s ,  i . e .  they are independent of t h e  or ientat ior?  

i n  space. This fact leads immediately t o  a considerable s implif icat ion 

of t h e  algebra of t h e  problem. 

quantum number do depend on t h e  o r i en ta t ion  i n  space, and the  pro’?l-a 

All t h e  work done so far has been on t h e  ground s t a t e s  of molecu- 

For zero angu- 

However, states wi th  higher r o t a t i o r h l  

becomes correspondingly more d i f f i c u l t .  It i s  t h e  purpose of this - -  
t o  inves t iga te  systems of three Coulombic p a r t i c l e s  (two i d e n t i c a l )  a i  
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a r b i t r a r y  masses i n  a s t a t e  wit'n r o t a t i o n a l  quantum nlimijer q u a l  to 

un i ty .  

t he  subject  of Section 11. Section I11 i s  devoted t o  t h e  choice of 

wavefunctions. Results f o r  all invest igated systems a r e  presented and 

discussed i n  Sections I V  and V, r espec t ive ly .  Final ly ,  t h e  isotope 

s h i f t s  fo r  some atomic ions are considered i n  Section V I .  

The coordinate transformation and t h e  r e s u l t i n g  Hamiltonian a r e  

11. COORDINATES, HAMILTONIAN, AND U N I T S  

The Schrvdinger equation f o r  a system of N p a r t i c l e s  i s  

where V i s  t h e  i n t e r p a r t i c l e  p o t e n t i a l  energies,  m j  i s  t h e  mass of t h e  

j t h  p a r t i c l e ,  and t h e  d i f f e ren t i a t ion  i s  with respect  t o  t h e  laboratory 

coordinates xj ,  yj, z j .  

eliminated by t h e  transformation 

The coordinates of t h e  k th  p a r t i c l e  may be 

N 

i =1 
X = ( l / M )  C mixi, 

x! = x j  - Xk, 
J 

( 1 1 - 2 )  

where 
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N 

i =1 
M =  C q ,  a l l  j # k, 

i n  favor of t h e  center  of mass coordinates X, Y, Z .  When Eqs. (11-2) 

a r e  subs t i tu ted  i n t o  Eq. (11-1) the  r e s u l t i n g  Schrudinger equation may 

be  separated i n t o  a p a r t  describing t h e  t r a n s l a t i o n a l  motion of a f r e e  

p a r t i c l e  of mass M and energy EC, and another p a r t  describing the  i n -  

t e r n a l  motion of t h e  N p a r t i c l e s .  The i n t e r n a l  SchrtSdinger equation is8 

= E$, (11-3) ~ 

where E = ET - EC and t h e  d i f f e ren t i a t ion  i s  with respect  t o  t h e  r e l a -  

t i v e  primed coordinates defined by Eq. (11-2).  

numbering has been chosen such t h a t  t h e  two i d e n t i c a l  p a r t i c l e s  a r e  

labeled 1 and 2 while t h e  odd p a r t i c l e  i s  r e fe r r ed  t o  as 3. It  i s  con- 

venient t o  adopt t h e  u n i t s  

I n  the  present case t h e  
I 

E = p e 4 ~ - 2  f o r  energy 

and 

a0 = Ti%-1e-2 f o r  length,  
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- x -- 
W 1 1 G L . C  is the re&iced mss,9 

p = mm3/(m + m3), m = m l  = m2. 

Also, l e t  t h e  mass r a t i o  be 

P = mbg, 

s o  t h a t  

If t h e  t h i r d  (odd) particle i s  chosen t o  be t h e  one t o  which t h e  other 

two w i l l  be re fer red  as origin,  t h e  i n t e r n a l  Hamiltonian f o r  the  systari 

under consideration becomes 

where, i n  accordance with Eq. (11-2), ~ 3 1  = x l  - x3, ~ 3 2  = x2 - x3? e t c .  

The separation of t h e  motion of t h e  center  of mass has reduced 

t h e  problem from a nine-dimensional t o  a six-dimensional one. 

usefu l  set  of coordinates than the  s i x  Cartesian coordinates i n  Eq. (11-4) 

can be obtained by defining three  var iables  specifying t h e  t r i a n g l e  forrcec 

by t h e  three  p a r t i c l e s ,  and three Eulerian angles describing t h e  orierita- 

t i o n  i n  space of t h e  plane of t h e  t r i a n g l e .  

t h e  f i rs t  three  coordinates i s  t h e  i n t e r p a r t i c l e  distances,  rlZ9 r252 

and r31, o r  any s u i t a b l e  combination of them. The var iables  emFloyed 

here are 

A more 

The most na tura l  choice for 
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31 - '23, t = r  

u = r12. (11-5) 

The EuPerian angles are defined as follows: a i s  t h e  angle 

between t h e  fixed x a x i s  and t h e  l i n e  of nodes ( l i n e  of i n t e r sec t ion  be- 

tween t h e  f ixed xy plane and t h e  plane of t h e  p a r t i c l d s ) ,  and @ i s  the  

angle between t h e  pos i t i ve  d i rec t ions  of t h e  normals t o  those two planes.  

The las t  angle, y ,  i s  a measure of t h e  ro t a t ion  of t h e  t r i a n g l e  about i t s  

normal. 

made by def ining it t o  be the angle between t h e  l i n e  of nodes and one of 

t h e  pr inc ipa l  axes of i n e r t i a  of t h e  system. While such a choice may' be 

s u i t a b l e  f o r  molecular-like systems it would probably be impract ical  f o r  

atomic systems, and would lead t o  r a the r  complicated formulas. Ins tea i ,  

y has been defined t o  be the  angle between t h e  l i n e  of nodes and t h e  

vector ~ 1 2  = ~2 - a, where ~1 and 22 are t h e  pos i t ion  vectors  of t he  

i d e n t i c a l  p a r t i c l e s  i n  t h e  s ta t ionary  frame. This choice i s  meaningful 

over t h e  e n t i r e  range of the  mass r a t i o ,  and a l s o  results i n  a simple 

behavior of y under permutation of t h e  i d e n t i c a l  p a r t i c l e s .  

formation of t h e  Hami l ton ian  i n t o  these  coordinates, while laborious, i s  

straightforward. The transformation equation and t h e  form of the t r a n i  

formed Hamiltonian are given i n  terms of t h e  i n t e r p a r t i c l e  dis tances  z ' c  

t h e  k r l e r i an  angles i n  Appendix I .  

It has been suggested'' t h a t  a possible  choice of y could be 

The t rans-  
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It v i l l  prove csavenient l a te r  tc? have t h e  E m i l t o n i a n  ex- 

pressed i n  terms of t h e  charge r a t i o  

u = Z,/Zj 

then t h e  po ten t i a l  V may be wr i t ten  

It i s  a l s o  possible t o  adopt charge-dependent units defined by 

a1 0 E ao/Z2, 

i n  which case t h e  p o t e n t i a l  becomes 

(11-6) 

(11-7)  

Note t h a t  t h e  form of t h e  k ine t i c  energy operator i s  not affected by 

t h i s  transformation. It follows t h a t  t h e  energies obtained with 

Eq. (11-6) and Eq. ( 1 1 - 7 )  a r e  r e l a t ed  by 

E = E'/Z4, 

and a l s o  

rij = z?rjj. 
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The angular dependence of t h e  wavefunctionsll for L = 1 is 

given by t h e  representat ion coef f ic ien ts  of t h e  i r reducib le  repreaenta-  

t i ons  of t h e  three-dimensional ro t a t ion  group, Dif,Mz(a>p,Y)* The an@- 

lar momentum L = 1 has a space-z-component, %, and a body-z-component, 

M I .  The radial p a r t  was taken i n  t h e  form of a polynomial i n  u, s ,  and 

t, times a su i t ab le  exponential. For atomic systems (very s m a l l  p)  ex- 

c e l l e n t  r e s u l t s  have been obtained with exp[-as + a b t ]  while molecular 

systems (very l a rge  p )  are described w e l l  by a Gaussian exp[-c(u - u ~ ) ~ ] .  

1. S ta t e s  with Mz = 0 

For states w i t h  % = 0 t h e  th ree  matrix elements, D ~ t , o ,  ai* E 

f o r  p t  = - 1, 0, + 1, respect ively.  It i s  e a s i l y  ver i f ied12 t h a t  t?!e 

functions (111-1) a r e  eigenfunctions of L2 and Mz, namely 

f o r  p t  = - 1, 0, + 1. Any l inea r  combination of t h e  set  (111-l), fn 

par t i cu la r  t h e  functions 

sing siny, sing cosy ,  cosp, (111-2) 
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are a l s o  eigenfunctions o f  L' and M,. 'The f i rs t  t w o  mmbcrs of" t he  :;et 

(111-2) are of odd p a r i t y  while t h e  t h i r d  one has an even p a r i t y  as PE.~ 

be seen by inspection f r o m  the formulae i n  Appendix I. 

shown by Breit13 t h a t  t h e  t h i r d  term, cos@, when used i n  a wavefunctioc 

describing a two electron a t o m i c  system corresponds t o  t h e  case of 

equivalent o r b i t s  and i s  energet ical ly  unsuitable.  

terms, sing s in7  and sing cosy, are t h e  angular f'unctions used nere. 

The permutation operator, P12, which permutes t h e  i d e n t i c a l  p a r t i c l e s ,  

when operating on t h e  angular p a r t  of t h e  wavefunctions gives 

T t  h a s  k e n  

The remaining two 

P12sinp siny = - sing siny, 

P12sing cos7 = sing cosy. (111-a) 

Thus t h e  Eqs .  (111-3) serve t o  determine the  permutational symmetry cr '  

t h e  r a d i a l  p a r t  of the wavefunctions. 

The choice of t h e  form of t h e  radial p a r t  depends on the val  .... 

of t h e  mass r a t i o  p .  The polynomials must be of such nature as t o  :.:- 

t h e  wavefunctions t o  pass over into'* 

with 
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as p -, 0, and i n t o  an acceptable molecular wavefuiiction of C - c ; ~ ~ e t r y  I 

p + 03. This can be accomplished by wr i t ing  

5 - 2Q(f - f ) s inp  cosy, (111-4a) 

where 

f = P( s , t , u ) ex& [ -as+ ab t -c ( u-uo ) * 3 , ( I11 -4b) 

P(s , t ,u )  = c h1,s I t m u n-1 , 
I ,m, n=O 

(111-4~)  

c ( 1 1 1 4 )  f ( t )  = +f(-t), 

and AI,, a, b, c, and uo a re  t h e  va r i a t iona l ly  determined constants .  

The symmetry of t h e  l imi t ing  cases of p i s  determined by t h e  choice of 

s igns i n  Eq. (111-4d). With f ( t )  = f ( - t )  t h e  wavefunction i s  antisym- 

metric under permutation of t he  i d e n t i c a l  pa r t i c l e s ,  while with 

f ( t )  = - f ( - t )  it i s  symmetric. 

s ign i s  t o  be used t o  describe t r i p l e t s ,  t h e  - s ign  t o  describe singlet; 

For molecular systems it i s  only necessary t o  e s t ab l i sh  t h e  behavior of' 

t h e  wavefunction with respect t o  a change i n  s ign of t h e  e lec t ronic  20-  

ordinates.  Such an  operation, however, i s  equivalent t o  an inver>icn 

a t  t h e  center  of symmetry followed by a permutation of t h e  iden t i ca i  

pa r t i c l e s .  

- 
~ h u s  fo r  atomic systems ( p  -, 0 )  t h e  + 

Since the  angular functions have negative p a r i t y  t h e  + sip!  
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the - s ign  (symmetric) 2, (antisymmetric) gives r ise  t o  L~ states 

y ie lds  2% states. The conventional atomic and molecular syrmnetry 

c l a s s i f i c a t i o n s ,  however, a r e  based on t h e  assumption of i n f i n i t e  nu- 

clear masses. To avoid confusion t h e  various states have been c l a s s i -  

f i e d  here by t h e i r  permutational symmetry, i .e. they have been desig- 

nated as e i t h e r  symmetric or antisymmetric. 

2. S t a t e s  with M ,  = +-1 

For states with $ = +1 t h e  matrix elements, Dbl,fl, are 

(111-5) 

f o r  p 1  = -1, 0, + 1, respectively.  An analysis  similar t o  the  one 

which led  t o  t h e  wavefunction (111-4) now shows t h a t  for Mz = f 1 a 

correc t  wavefunction should be  of t h e  form 

(111-5) 
- 

x ( f +  f ) + u 2 ( c o s p  s i n r + - i  

where a l l  t h e  symbols have t h e  same meaning as before .  

G1 and q - 

The functions 

are degenerate f o r  both the atomic and molecular systems. 
- 

The r e a l  p a r t  of J ' + ~ ,  - e.g. ,  may be w r i t t e n  
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Re[q+l]EJI=-[u2(f -? )+  st(f+?)](cosa cosy- sina cosg siny) 

+ 2Q(f +?:)(cosa siny+ sincr: cosg cosy), ( 111-7 ) 

and the imaginary part as 

* ~m[~r+] = -[u2(f - 7 )  + st(f+ f)l(sina cosy + cosa cosg siny) - 

+ 2Q(f + ?)(sim sin7 - cow co@ co&). (111-8) 

Again, the angular f’unctions in Eq. (111-17) have odd parity, while their 

behavior under permutation of the identical particles is given by 

plz( cosa cosy - sim cosg siny) = -(corn cosy - sim cos@ siny) 

p12( cosa siny + sim cosg cosy) = cosa siny + sim cosg cosy. 

Consequently, when F(t) = f(-t), the wavefunction (111-7) is symmetric,, 

while for ?(t) = -f(-t) it is antisymmetric under permutation of the 

identical particles. 

are considered in detail. 

In this note only the states with M, = 0 ( C  states) 

IV. RESULTS 

It is convenient to divide all the investigated systems into 

The systems of the first group are characterized by the three groups. 

charge ratio, u = Z Z = - 1. 
equation together with the nonlinear parameters and the expectation 

The two lowest roots of the secular 31 
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- .values  f o r  various rn f o r  these systems are shown in Table 1: f z  ~ r f i e r  i J  
of decreasing mass r a t i o  p. The only s t a b l e  systems f o r  cr = - 1 are of 

t h e  antisymmetric type, and consequently t h e  symmetric states have not 

been considered. The systems of t h e  second group are character ized by 

u = - 2. Here both t h e  symmetric as w e l l  as t h e  antisymmetric states 

are stable. As it happens, there  are very f e w  real systerns i n  t h i s  

category, and most of t he  tabular  e n t r i e s  are simply points  needed f o r  

t h e  graphs. 

and expectation values (rfj) for  t h e  antisymmetric states, whfle t he  

corresponding results f o r  the symmetric states are shatn i n  Table 111. 

Table I1 contains t h e  two lowest roots ,  nonlinear parameters 

Final ly ,  i n  t h e  t h i r d  group i s  t h e  He  i soe lec t ronic  sequence. 

energies, parameters, and the ca lcu la ted  as w e l l  as the experimental 

The 
*-* -_- * 

values of t h e  isotope s h i f t s  f o r  He  and Id+ are reported i n  Table I'v' 

f o r  both antisymmetric ( Z3P) states and t h e  symmetric (2lP) states. 

Calculations have been completed f o r  t he  Helium isoe lec t ronic  sequence 

through Ne+8, and will form t h e  content of a separate  report .15 

The values of t h e  masses on which t h e  results are baaed a r z  

t h e  subject  of Appendix 111. 

V. DISCUSSION 

1. General Remarks 

I n  general, t h e  existence of mul t ip le  minima i s  t o  be expec~ez  

with expansions of t h e  s i z e  employed here .  Although l a r g e  i n f t i a l  spit- 

Ings have been used t o  minimize t h e  p o s s i b i l i t y  of overlooking a t r u e  
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m i n i m u m ,  no assurance can be  given t h a t  t h i s  has Cot napyr~? ,~ -% L-czxi? : - -  

a l l y .  Numerical in te rpola t ion  together with graphical  me t t c l i  1 r; : S 

used t o  optimize t h e  nonlinear parameters. I n  view of t h e  f-;ci  ;*at 

t he  main emphasis of t h i s  inves t iga t ion  l i e s  i n  t h e  broad aspect;, of 

t h e  th ree  p a r t i c l e  system with an a r b i t r a r y  mass r a t i o ,  subs tan t ia l ly  

t h e  same terms have been used i n  Eq. (IIII-4c) fo r  t h e  descr ip t ion  of 

a l l  t h e  systems. The terms have been chosen i n  t h e  order of increa 

metric, i . e .  t h e  polynomial i n  a 10-term wavefunction includes a l l  t k . 2  

poss ib le  terms through second degree i n  u, s, and t; a 20-tern witvc- 

funct ion includes a l l  terms through t h i r d  degree i n  u, 8, and t, e t e ,  

I n  terms of t h e  conventional c l a s s i f i c a t i o n  of a tonic  an? 

molecular systems t h e  energies reported here  for  t h e  moleculay s y r - t  

are t o  be regarded as t h e  first r o t a t i o n a l  levels16 (of  t he  zero - z n i  

f i r s t  v ib ra t iona l  l e v e l s )  of t h e  Zg and 

t e m s  t h e  t o t a l  angular momentum of uni ty  i s  t h e  r e s u l t a n t  of t h e  

lar momenta of t h e  Is and 2p e lec t rons .  For a l l  but  t h e  extreae vs 

of t h e  mass ra t io ,  however, it can only be sa id  with jmt f f f ca t l c , r .  ?, 

t h e  systems possess a t o t a l  angular momentum of uni ty  with no refe 

t o  t h e  manner i n  which t h i s  angular momentum i s  d i s t r i b u t e u ,  C. A ,  

Coulson ( p r i v a t e  communication) has suggested t h a t  a l l  of t+,e st?tc- 

considered here  be referred t o  as P states regardless  of ther-  ~ 

or atomic character,  s ince t h e  t o t a l  angular momentum as well 

z-component have been quantized. 

states. I n  t h e  a tonic  
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The energies of molecular systems with i r if initc a c l e c u l v  

masses ( labeled p = m i n  t h e  t ab le s )  a r e  based on t h e  value of the mass 

r a t i o  p = lo8 (io4 i n  one case) .  This value of p i s  more consis tent  

with t h e  formulation of t h e  problem since for  t r u l y  i n f i n i t e  nuclear 

masses t h e  var iab les  u, p, and 7 become constants .  To the  accuracy 

reportedSthese r e su l t s ,  of course, should be  i d e n t i c a l  t o  those wl th  

p = 00. 

have not been f u l l y  optimized, but  were chosen reasonably large,  ye t  

small enough s o  as not t o  lead t o  ar i thmetic  d i f f i c u l t i e s ,  The paran- 

eter c i s  analogous t o  a force constant,and consequently can be expected 

t o  increase without l i m i t  as p becomes i n f i n i t e l y  l a rge .  

Also, t h e  values of the  parameter c f o r  these  systems ( p  = CO) 

The wavefunction (111-4) with c # 0 has t h e  disadvantage that 

fo r  very l a r g e  values of the  mass r a t i o  t h e  basis set  i s  l i n e a i l y  d c -  

pendent. 

c i s  l a rge .  A s  a r e s u l t ,  the  wavefunction behaves somewhat l i k e  a h 

function, and t h e  overlap matrix becomes near ly  s8ngLzkas, %,e. one 

more of i t s  eigenvalues become very s m a l l  o r  vanish. Consequentzy, 

expansions must be l imited t o  a r e l a t i v e l y  small number cf term. 

r a t i o  of t h e  l a r g e s t  and smallest  eigenvalues of t h e  overlap rmtr ix  r. 

been used as a c r i t e r i o n  f o r  t h e  numerical i n s t a b i l i t y  i n  a giveri C'L 

I n  addi t ion the  optimized energies have been recomputed w i t h  t:r.t;. i 

rearranged and t h e  extent  o f  agreement noted. I n  t h i s  manner t ke  7 

of terms used and t h e  number of s ign i f i can t  figures reported i n  the  

I n  t h i s  range of p, t h e  uo and (u) are e s s e n t i a l l y  equal * ~ h : l  

The 
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t ab le s  has been determined. 

smallest eigenvalue of t he  overlap matrix w a s  foimd t o  be 1.91 x Zr!’ 

For %(m) t h e  r a t i o  of the iwg:& L 

f o r  t h e  energy reported i n  Table I .  A s  t he  mass r a t i o  decr.za;e; ti.: 

l inear  dependency problem becomes progressively less c r i t i c a l .  Tm-3 

fo r  t h e  system ppp t h i s  r a t i o  w a s  3.65 x lo7 for a wavefunction wit!, 

four times as many terms as t h a t  f o r  H2(m) .  

t h a t  f o r  $(m) only 10  terms with c # 0 were s u f f i c i e n t  t o  y ie ld  

Eo = - .602.5036 a .u .  which agrees t o  two p a r t s  i n  t e n  thousand w i t h  

t h e  exact value (Hylleraas17 obtained EeXact = - .60264. 

I 
-k It i s  i n t e r e s t i n g  t o  rx~te  

a.u.> 

while a 40-term ca lcu la t ion  with c = 0 gave only EO = - .581948 a , u .  

On t h e  other hand a similar comparison i n  t h e  case of ppp r e v e l e d  tr . _  

a 40-term wavefunction with c included improved t h e  energy on7y in t:kJr 

f i f t h  s ign i f i can t  f i gu re  over a 50-term wavefunction with c = 0. ‘Tze 

foregoing arguments ind ica te  t h a t  t h e  l i n e a r  dependency of the bas._ic 

set c # 0 i s  less of a drawback than it may appear t o  be ,  7he c r ’ r , v .  

gence of t h i s  set  as a function of t h e  mass r a t i o  i s  such as t o  t i l !  

t h e  set t o  descr ibe t h e  systems reasonably w e l l  regardzess of t i .2  \- ~. 

i t y  of t h e  l i n e a r  dependency. 

The r e s u l t s  reported here were obtained by nean; >? jr. y- :r;  

wri t ten  f o r  t h e  CDC 1604 electronic  computer located i n  the  Cmp. .  

Center of The University of Texas. The secular equations were r-’ 

by t h e  Schmidt-Jacobi ro t a t ion  method. For a 50-term wavefcx,r  

average running t i m e  w a s  s l i g h t l y  over 20 minutes per s e t  of pLiiL-\ +. . 
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f o r  a 10-term wavefunction i t  w a s  under 5 minutes per s i m i l a r  set .  Tine 

necessary in t eg ra l s  and methods of evaluating them are discussed i n  

Appendix 11. 

2. Charge Rat io  IT = - 1 

This group includes t h e  molecules $, I$, and $, and t h e  

mesonic systems wp, dpd, and t p t .  The lowest root ,  Eo, i s  p lo t t ed  

aga ins t  log p i n  Fig.  1. 

known, a r e  a l s o  p lo t t ed  f o r  comparison on the  same graph. 

The ground s t a t e  ( L  = 0)  energies,  where 

The expecta- 

t i o n  values of various rn a re  shown i n  Fig.  2. I n  t h e  i n f i n i t e  mass 

l i m i t ,  and t o  a good approximation a l s o  f o r  t h e  l a r g e  values of p ( i . e .  

i J  

t h e  systems, %, I$, and €$), t h e  parameter u 

equilibrium internuclear  dis tance and hence be equal t o  (u). 

should represent  t h e  0 

A s  t h e  

mass r a t i o  becomes smaller, uo approximates t h e  average in te rnuc lear  

d i s tance  evermore poorly due t o  t h e  anharmonicity of t h e  v ibra t ions .  

When t h e  masses become nearly equal such an in t e rp re t a t ion  ioses it 

meaning a l toge ther .  A t  t h e  same t i m e  Eo l i es  progressively higher ~ : - , L > L L  

t h e  ground s t a t e  energy and, i n  f a c t ,  t h e  r e s u l t s  i nd ica t e  t h a t  sys~ems 

with p l e s s  than about 4.3 do not e x i s t  i n  a bound s t a t e  with angular 

momentum equal t o  uni ty  although they may be bound i n  t h e i r  grc7~r,fi -t "C-C-, 

This s i t u a t i o n  i s  re f lec ted  i n  t h e  f a c t  t h a t  t h e  expectation v a l ~ . : ~  

r i j  and r f j  increase sharply while t h e  expectation values of r ' T 1  :=::- . 

zero as p approaches 4.3 from l a r g e r  values.'' 

1 J  
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Very l i t t l e  has been done so f a r  on t h i s  problem even by t h e  

Born-Oppenheimer or similar approximations t o  allow f o r  an i l luminating 

comparison of results. Direct var ia t iona l  methods similar t o  t h e  one 

employed here  have been used t o  compute only t h e  L = 0 state energies 

of some of t h e  systems considered i n  t h i s  note.  The adiabatic approxima- 

t i o n  has been used by Cohen e t  a l l9  t o  ca lcu la te  t h e  L = 1 states of t h e  

mesonic molecules ppp, dpd, and t p t .  Unfortunately, both of these papers 

lack  a c l e a r  statement concerning t h e  values of t h e  masses and conversion 

f a c t o r s  employed i n  calculat ing t h e  reported energies.  Cohen e t  a1 ob- 

ta ined t h e  t o t a l  energies -2623 ev and -2887 ev f o r  t h e  system ppp and 

dFd, respect ively.  Belyaev reported t h e  binding energies f o r  ppp, dpd, 

and t p t  t o  be 109 ev, 226 ev, and 288 ev, respect ively.  Since i n  reduced 

atomic units t h e  two p a r t i c l e  energy i s  -0.5 f o r  a l l  systems, t h e  values 

of Eo shown i n  Table I lead t o  t h e  binding energies f o r  t h e  mesonic mole- 

cules of 106.8 ev, 226.3 ev, and 288.8 ev, while t h e  t o t a l  energies are 

-2635.0 ev, -2889.2 ev, and -2999.7ev. 

3. Charge Rat io  u = - 2 

I n  cont ras t  t o  the u = - 1 case, binding i s  found here f o r  t h e  

symmetric as w e l l  as t h e  antiSymmetric states over t h e  e n t i r e  range cf 

values of t h e  mass r a t i o .  Consequently, "atomic" wavefunctions ( c  = 0 

i n  111-4) have been used f o r  small values of p( p < -10) while "molecu16" ' 

wavefunctions (b  = 0 i n  111-4) have been employed f o r  la rge  values of 
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The intermediate region has been computed with both types p( p 7  -l), 

of wavefunctions fo r  comparison. The Bnergies obtained wi th  t h e  atomic 

wavefunction are better i n  both t h e  symmetric and antisymmetric states 

through p values of about 10 .  

Figs.  3-6 show t h e  energies and expectation values as function 

of log  p. 

i n t o  two groups with predominantly e i t h e r  atomic or molecular character .  

The s t r i k i n g  feature i s  t h e  clear d iv i s ion  of t he  systems 

While more pronounced i n  the antisymmetric states, t h i s  phenomenon i s  

present i n  both of the symmetry groups. 

atomic end the energy curve for  the  antisymmetric states ( t r i p l e t s )  

st ;arts t o  drop from t h e  very beginning, i.e. at He(p = 0),  w h i l e  the 

corresponding curve f o r  t h e  symmetric states ( s i n g l e t s )  f i rs t  rises 

s l i g h t l y  towards the  more pos i t ive  energy values before  f a l l i n g  off 

tuwards the  lower values i n  the  molecular region. 

It should be noted ' tha t  a t  the 

This behavior i s  t o  

be expected and i s  consis tent  with the  fact tha t  t h e  mass-polarization 

effect lowers the energy i n  $ r i p l e t s  while r a i s i n g  it i n  s ing le t s .  

Arithmetic considerations made it necessary t o  use p = l o 4  i n  

the " in f in i t e "  mass ca lcu la t ion  of t he  symmetric (&) state. 

q u i t e  evident, however, t h a t  both the  % and & energies approach the 

exact i n f i n i t e  mass valuesz1 of -3.808 a.u. and -2.309 a.u., respect ively 

The negative values of t h e  parameter UO i n  the p = 1 and p = 10 antisym- 

metric states ind ica t e  that t h e  Gaussian exponential  i s  not very suitable 

f o r  systems w i t h  only moderately l a r g e  values of t h e  mass r a t i o .  

over, i f  uo assumes l a r g e  negative value w h i l e  c is very small as i n  t he  

p = i antisy-metric case, then 

It i s  

More- 
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- c ( u  - u O ) ~  = - 2cuou + const, uo<< 0, c<<l .  

This ind ica tes  t h a t  a b e t t e r  descr ip t ion  of t h i s  system would be ob- 

ta ined with an exponential l i nea r  i n  u .  

better descr ipt ions are possible  i n  t h i s  region, t h e  corresponding por- 

t i ons  of t h e  curves on t h e  graphs have been drawn dashed. Except fo r  

t h e  systems p = 0 (which i s  discussed i n  Section V I )  and p = cothere  

has been no previous work done on any of t h e  systems i n  t h i s  category. 

I n  order t o  ind ica te  t h a t  

V I .  THE HELIUM ISOELECTRONIC SYSTEM 

A .  Isotope S h i f t s  - 

The material i n  this subsectrbn has already appeared elsewhere 

i n  a preliminary form22. The numerical r e s u l t s  presented here cons t i -  

t u t e  a s l i g h t  improvement over t h e  earlier repor t .  

I n  1930 Hughes and Eckart23 employed center-of-mass coordinat ?F 

t o  achieve t h e  separation of t h e  t r a n s l a t i o n a l  motion of t h e  center  Jf 

mass and t h e  i n t e r n a l  motion of  a system of th ree  p a r t i c l e s .  Assuming 

a simple open s h e l l  hydrogen-like wavefbnction, they have, by perturba- 

t i o n  theory, obtained an ana ly t i ca l  expression fo r  t he  mass e f f e c t  of a 

two-electron atom. When experimental methods became s u f f i c i e n t l y  refined 

t o  allow accurate  measurements t o  be made on t h e  isotope s h i f t  i n  helium, 

it w a s  found t h a t  t h e  values of t h e  isotope s h i f t  calculated from Hughes 
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and Eckar t ' s  formula were i n  quant i ta t ive  disagreement with t he  experi- 

mental r e s u l t s .  24) 25 

s t a t e s .  Except f o r  possibly a f e w  unsuccessful t he re  has 

been no fur ther  t h e o r e t i c a l  work done along these  l i n e s  f o r  exci ted 

states, mainly due t o  t h e  lack of s u f f i c i e n t l y  accurately wavefunctions. 

Bethe and Salpeter  have s ta ted  t h a t  " the cause of these  discrepancies 

i s  not ye t  known,"27 while others2* have suspected the theory i t s e l f .  

The discrepancy w a s  e spec ia l ly  pronounced i n  P 

The t o t a l  mass e f f ec t  i s  usua l ly  thought of as consis t ing of 

two separa te  pa r t s :  

t h e  motion of t he  nucleus i tself ,  and a much smaller correct ion a r i s i n g  

from t h e  mass polar iza t ion  ( spec i f i c  s h i f t ) .  The elementary cor rec t ion  

affects a11 t h e  l eve l s  of an atom i n  t h e  same way, i s  independent of t h e  

state of i on iza t ion  of the atom, and can be computed d i r e c t l y .  

second p a r t  of t h e  mass correct ion d i f f e r s  f o r  t h e  various states of t h e  

atom. 

value of t h e  operator yl-y2. 

value was u n t i l  now responsible f o r  the  disagreement with ava i l ab le  

experimental results f o r  the isotope s h i f t .  

t h e  elementary mass cor rec t ion  i n  energy due t o  

The 

Treated as a per turbat ion it i s  proport ional  t o  t h e  expectation 

It i s  t h i s  second p a r t  whose t h e o r e t i c a l  

The method employed i n  t h i s  work lends i t se l f  qu i t e  n a t u r a l l y  

t o  t h i s  type of problem. The Hamiltonian (11-4) as a function of the 

mass r a t i o  p reflects t h e  e n t i r e  dependence of t h e  energy on t h e  masses. 

The connection w i t h  experiment i s  made through t h e  d i f fe rence  of t h e  

spectroscopic term values fo r  two isotopes of the  same atom. 

scopic t e r m  value i s  t h e  t o t a l  ( two-electron) atomic energy l e s s  t h e  

The spectro- 
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corresponding hydrogen-like (one-electron) energy, - 4 Z". 
are shown i n  Table LV. 

'The r e s u i t s  

The discrepancy between t h e  t h e o r e t i c a l  and experimental values 

f o r  t h e  isotope s h i f t  i n  He has now been brought within t h e  limits of ex- 

perimental accurgcy. 

probably be sa id  with some confidence t h a t  t h e  calculated results f o r  U+ 

are accurate  t o  within l$. 

On t h e  bas is  of t h e  agreement f o r  helium, it can 

B. Energies for  p = 0; Comparison with Pekeris, Schiff ,  and Lipson2' 

The energies computed f o r  t h e  2lP and z3P states of the  helium 

atom with p = 0 are compared i n  Table V with the  results of Pekeris e t  a1 

f o r  t n e  same systems. 

b e t t e r  than t h e  220-term values t h a t  they obtained, though, as i s  t o  be 

ant ic ipated,  they l i e  above t h e i r  extrapolated estimates of t h e  true 

energies.  The super ior i ty  of t h e  50-term results, of course, res ides  i n  

t h e  fact t h a t  t h e  wavefunction (111-4) contains two nonlinear parmeters ,  

each of which has been f u l l y  optimized, whereas Pekeris e t  a1 preselected 

t h e i r  corresponding nonlinear parameters. It is, however, i n t e r e s t i n g  t o  

see j u s t  how w e l l  t h e i r  preselected parameters function when used i n  a 

50-term wavefunction. These parameters are 

Tae 50-term values ~epsrted here are s l i g h t l y  

The corresponding energies are entered i n  Table V .  
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The th ree  vectors forming t h e  sides of t h e  t r i a n g l e  of t h e  

p a r t i c l e s  are defined i n  terms of t h e  pos i t ion  vectors  of t h e  pa r t i c l e s ,  

i . e .  

and hence 

r i j  = [(xj - xi)2 + (Yj - Y i ) 2  + ( Z j  - z#, 
i 

where xk, yk, Zk are t h e  Cartesian coordinates of t h e  p a r t i c l e s  i n  t h e  

fixed frame. Note t h a t  X i j  = - x j i ,  e t c .  

defined by means of the vectors rij as follows. 

vectors  i n  t h e  pos i t i ve  x and z direct ions,  respect ively,  &' a u n i t  

vector i n  t h e  pos i t i ve  z' direct ion,  and 2 a u n i t  vector along the  l i n e  

of nodes such t h a t  

The N e r i a n  angles are then 

Let  h and k be u n i t  

Then 
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The formulae a c t u a l l y  used i n  t h e  coordinate transformation and which 

follow from the  above de f in i t i ons  of t h e  Eulerian angles axe 

where Q nas been already deficed as 

The Hamiltonian may now be wr i t ten  i n  terms of the i n t e r p a r t i -  

c l e  dis tances  and t h e  N e r i a n  angles.  The transformation, w h i l e  lano- 

r ious,  i s  straightforward. The Hamiltonian, after considerable reduc- 

ti on, b ec m e s  
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= 1 ' 2 3  x r 3 1  I 

and Zie is the charge of the  i t h  particle.  The change from the  radial  var iables  

i j  to u ,  s ,  and t defined in  Eq. (11-5) is t r ivial ,  and is not considered here.  r 



A P P E N D I X  11. THE I N T E G R A T I O N S  

There are two bas ic  types of i n t e g r a l s  t o  be considered. For 

systems with atomic character the wavefunction (111-4) w i t h  c = 0 leads 

t o  i n t e g r a l s  

00 S U 
N s x t  I ( L , N , M )  = 1/A! ds  J du d t  s%% e' e , ( A I I - 1 )  

0 0 0 

where 

A = L +  M +  N .  

These i n t e g r a l s  are e s sen t i a l ly  t h e  same as those derived by James and 

C ~ o l i d g e , ~ '  and are l i s t e d  here merely f o r  the sake of completeness. 

I ( O , O , M )  = (1 - x ) - ( ~  + ( A I I - 2 )  

I ( O , N , O )  = [ I ( O , N  - 1,O) + 1]/(1 - X) ( A I M )  

I ( L , O , O )  = [ I ( L  - 1,0,0) + L +  1]/(1 - x)  (Ai;-4 ) 

I( O,N,M) = [ M I (  O,N,M- 1) + N I (  O,N - l , M ) ] / A (  1 - X) ( A I I - 5 )  

I ( L , O , M )  = [ L I ( L -  l , O , M ) +  M I ( L , O , M -  l ) ] / A ( l -  x) ( A X - 6 )  

I ( L , N , O )  = [ U ( L  - l , N , O )  + N I ( L , N  - 1,O) 

+ A ( A  + l ) / ( N  + 1 ) ] / A ( 1  - x) ( A X - 7  ) 

25 
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I ( L , N , M )  = [LI(L - 1 , N ) M )  + N I ( L , N  - 1 , M )  

+ MI(L ,N,M - 1)] /A(1  - X )  (AII-8) 

For negative values of N two addi t iona l  aux i l i a ry  functions a r e  needed 

03 

A(L;y) = I sLe-Ysds, 
0 

03 S 
v(L,M) = I ds d t  skMe-Sext. 

0 0 

The necessary recursion r e l a t ions  a r e  

v ( - ~ , o )  = - l / x j n ( l  - x) 

V ( - l , M )  = - l/x[MV( - 1 , M -  1) - A ( M -  1;l- x ) ]  

V(L,O) = l/x[A(L;1 - X )  - A(L;1)] 

(AII-9) 

(AII-10) 

( AII-11) 

(AII-12) 

( A I I - 1 3 )  

( AII-24) 

(a11 -15 ) 

(AII-16) 

(AII-17) 

Then i f  
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I (0, -1,M) = V( - 1 , M )  (AII-18) 

I ' ( L , - 1 , o )  = L I ' ( L  - 1 , - 1 , O ) + V ( L  - 1,o) (AII-19) 

I1 (L , - l ,M)  = [LZ'(I, - 1,-1,M) + M I 1 ( L , - l , M - l )  

+ V(L - 1,M) - V(L,M - 1)]/(1 - X) , (AII-20) 

Eq. (AII-8) may now be used t o  f'urther lower N .  

When b = 0 in t h e  wavefunction (111-4) the  r e su l t i ng  

in t eg ra l s  are of t he  form 

( a11 - 21 ) 

The in tegra t ion  over s and t can be performed immediately and for even 

values of M r e s u l t s  i n  

= 2/( M + 1)8( r d u  umNtl[ (au) L+ L( au)  L-l 
0 

-au-c( u-ug) + . . . + L!(au) + ~ ! ] e  ( A I 1  - 22) 
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Thus t h e  i n t e g r a l  t o  be evaluated I s  

where 

K = - 1/2/72 
The term exp[-a(uo - a /4c) ]  may be factored out of a l l  t h e  matrix 

elements; def ine  

The lowest two integrals a r e  given by 

J(1) = e -aKp/2c + KJ( 0) .  

(AII-24) 

( A I 1  -25) 

(AII-26) 

All higher in t eg ra l s  may then be obtained by t h e  use of t h e  following 

recursion formula 

J ( p )  =@kJ(p - 1) + ( p  - 1)/2cJ(p - 2) .  ( A I I - 2  ) 
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The e r ro r  function i n  Eq.  (AII-25) w a s  evaluated by means of e i t h e r  t h e  

normal or t he  asymptotic s e r i e s  depending on t h e  value of t he  argument. 

For negative values of t h e  argument t h e  f i r s t  t e r m  on t h e  

r i g h t  i n  t h e  recursion Eq. (AII-27)  becomes negative, and t h e  method 

rap id ly  becomes useless  due t o  t h e  loss of accuracy. I n  such cases it 

w a s  necessary t o  r e s o r t  t o  numerical i n t eg ra t ion  of the  i n t e g r a l s  J ( p )  

f o r  two high values of p(64 and 65), and then t o  use Eq. ( A I I - 2 7 )  t o  

recur down. 

qu i t e  s a t i s f a c t o r y  fo r  t h a t  purpose. 

A careful inves t iga t ion  has shown Simpson's rule t o  be 

APPENDIX 111. 

Frequently it becomes des i r ab le  t o  express the  energies and 

other physical  p roper t ies  i n  u n i t s  other than those i n  which they are 

reported.  There are two types of atomic u n i t s  t h a t  are being used i n  

t h e  literature. The reduced atomic u n i t s  are based on t h e  reduced mass 

of a system of p a r t i c l e s  while another kind of atomic units i s  based on 

t h e  mass of one of t he  p a r t i c l e s  i n  t h e  system. I f  t h i s  p a r t i c l e  i s  an 

e lec t ron  these  units then become t h e  usua l  atomic un i t s  where t h e  unit 

of length  i s  t h e  Bohr radius (0.529172 a); i f  t h e  p a r t i c l e  i s  a meson 

t h e  u n i t s  could be called mesonic atomic units. It i s  unfortunate t h a t  

it has become customary t o  c a l l  any and a l l  of these  types of u n i t s  

simply atomic units (a .u . ) .  Throughout t h e  t e x t  t h e  notat ion a.u. repre-  

sen ts  t h e  reduced atomic uni t s .  Note t h a t  fo r  i n f i n i t e  masses the  
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reduced atomic units and t h e  Bohr atomic units are ident ica l .  For a 

comparlson of various results t o  be possible  a table of the  masses on 

which the  calculations are based i s  necessary. 

Table V I .  

units defined i n  8ection 11; t o  convert them i n t o  the Bohr atomic units 

the  energies must be multiplied and linear dis tances  divided by the  

factor p/me whose values for  several  systems of spec ia l  ipterest are 

sham i n  Table VII. The results fo r  the mesonic systems can a l s o  be 

Such i s  the  purpose of 

A l l  the results i n  Tables I - V are i n  the reduced atomic 

expressed i n  the mesonic atomic un i t s  by multiplying the  energies by a 

fac tor  and distances by i t s  r e ~ i p r o c a l . " ~  

The results of Tables I1 and 111, while being spec i f i ca l ly  for  

systems with Z = - 1 and Z3 = 2, may e a s i l y  be =de t o  apply t o  systems 

with any value of Z and Z 3  euch t h a t  their r a t i o  cr x Z3/Z = - 2. 
bean mentioned in Bection I1 it i s  possible  t o  work i n  charge-dependent 

units i n  which case the Eqs. (11-8) may be ueed t o  convert t he  results 

As has 

f o r  one system with a given set of charges t o  those for  a d i f f e ren t  

one. Thus, f o r  example, by dividing the energy of the  system p = lo8 

i n  Table I1 by 1 6  one obtains t h e  energy of t h e  system with t h e  same 

mass r a t io ,  but where the nuclei each have one half  of t he  charge of a 

proton, and the odd pa r t i c l e  has t h e  e lec t ronic  charge. The energies 

reported i n  ev are based on the value 

%e4W2 = 27.2097 ev. 
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TABLE IV 

ATOMIC ENERGIES, PARAMEnTERS, AND ISOTOPE SmFTS 

d 

Isotope Sh i f t  

calc. exp 
-1) (cm-? 1 (CIIi3 (a.uO 1 ( cm 

System Rydberg p x lo4 a b Energy 

ZIP, Hes 109717,345 1.8196 -2.12383358 1.68f.005b 
2.75 ,4193 1.67 1.67f: 

21Pr He4 109722 ~ 2 6 7  f.3709 - 2 412383565 (1 6 58 )" 

Z'P, (Li')" 109727.295 0.9126 -4,99332659 

2lP, (Li+)7 109728.723 0.7825 -4,99332987 (2 i032)a 
--- 4.36 ,2970 2.13 

Z3P, H# 109717 0345 1,8196 - 2.13317 527 

0.675' 2.71 .3840 Os67 
2 3 ,  He4 1097 22.267 1.3709 -2.13317237 (0.745)" 

2'P, (Li+I6 109727.295 049126 r6.02774288 
I -  

--- 4.45 43075 0.63 
2'P, (Li+)7  109728.723 0.7825 - 5.027 7 3889 ( p -653 )" 

- 
aCalculated from the Hughes-Eckhart formula, footnote  23. 

bBradley and Kuhn, loc. cit. 
'Fred et al, loc. cit. 



TAJ3LE V 

A COM€!ARISON WITH PEXERIS, SCHIFF, AND LIPSON: 
THE HEZIW ATOM ENERGIES (ATOMIC UNITS) FOR THE CASE p = o 

PSR - 220 m - w  PSR - 50 S t a t e  Msa 

-Z1P -2.123841954 -2.12384140 -2.12384267 -2.1238400 

2 3 ~  - 2.1331635 -2 -13316331 - 2.13316413 

Key: MS, This paper) PSL - 220, PSL - CQ r e s u l t s  due t o  Pekeris 
et a l ,  footnote  28, from t h e i r  220 term wave f ine t ion  and from the i r  
extrapolated estimates, respectively; PSL - 50, t h i s  paper, using 
the non-linear parameter values used by Pekeris et a1 i n  t h e  con- 
s t r u c t i o n  of their  wavefunctions. 



c 

MASSES OF ELEMENTARY PARTICLESa 

e d tC dC PC U b -  a 

7294.4 5496.93 3670.44 1836.13 206.76 1.0 

a 

bComputed from Rm/RHe4 = 1 + me/m, = 1.00013709. 

I n  u n i t s  of t h e  electron m a s s .  

C Based on t h e  following values taken f r o m  t h e  American I n s t i t u t e  
of Physics Handbook (McGraw-Hill, New Yark, 1957 ); 

%/me = 1836.13 , 
"p = 1.007595 a.m.) 

md = 2.014190 a.m., 

M t  = 3.01650 a .m.  

'G. Shapiro and L. M. Lederman, F'hys. Rev. - 125, 1022 (1962). 



TABLE VI1 

CONVERSION FACTORSa 

- 

System p l m ,  

1 .o 

0.999818 -- 
0.9997 28 -- 

0.999456 -- 

T i  

4 
H; 

t i L  t 

dcld 

199 e265 

195.734 

0.96375 

0.94667 

PPP 185. 834 0.89879 

.WP 201.06 0.97243 

aIn t h e  column headings P = reduced mass and % = mass of 
meson. I n  t h e  row headings p i nd ica t e s  a v-meson. 



The L = 0 and L = 1 energies i n  reduced atomic uni t6  as function 

The L = 0 r e s u l t s  are of l g p  f o r  systems w i t h  the charge r a t i o  (5 = -1. 

taken f r o m  references 1-6. 

L E G E N )  FOR F I G U R E  2 

The expectation values of m i n  reduced atomic u n i t s  as function 
i j  

of l g  p f o r  systems with the  charge r a t i o  (I = -1. 

L E G m  FOR F I G U R E  3 

Charge r a t i o  0 = -2. The L = 1 energies i n  reduced atomic u n i t s  

of t he  s y m e t r i c  and antisymmetric states a s  funct ion of l g  p. 

shape of t he  curbs near p = 1 i s  not d e f i n i t e l y  es tabl ished from t h e  

information given i n  Tables 2 and 3, and consequently t he  cu*s i n  

The 
D 

this region are shown dotted.  

LWETJD F O R  F I G U R E  4 

Charge r a t i o  cr = -2. The expectation values of rij ’’ i n  reduced 

atomic u n i t s  f o r  the symmetric and antisymmetric s t a t e s  a s  a funct ion 

of l g  p. 

from the information given i n  Tables 2 and 3, and consequently t h e  curves 

i n  t h i s  region are shown dotted.  

the  values f o r  p = 1 obtained with the  atomic and m,olecular  ravefu functions 

are shown separately.  

The shape of the curves near  p = 1 i s  not d e f i n i t e l y  established 

Where t h e  scale of the graphs permits, 



LEGEND FOR FIGURE 5 

Charge r a t i o  u = -2. The expectation values of r i n  reduced 

atomic u n i t s  f o r t h e  symmetric and antisymmetric s t a t e s  as a funct ion 

of l g ip .  

from t h e  information given in  Tables 2 and 3, and consequently the  curves 

i n  t h i s  region are shown dotted.  

t h e  values f o r  p =I 1 obtained w i t h  t h e  atomic and molecular wavefunctions 

are shown separately. 

i j  

The shape of the  curves near p = 1 is  not d e f i n i t e l y  es tab l i shed  

Where the  s c a l e  of t he  graphs permits, 

LEGEND FOR FLGURE: 6 

Charge r a t i o  d = -2. The expectation values of  r i n  reduced ij 

atomic unitB f o r t h e  symmetric and antisymmetric s t a t e s  aB a funct ion 

of l g  p. 

f r o m  t h e  information given i n  Tables 2 and 3, and consequently the curves 

i n  t h i s  region are shown dotted.  

t h e  values f o r  p = 1 obtained with t he  atomic and molecular wavefunctions 

are shown separately.  

The shape of t h e  curves near p = 1 i s  not d e f i n i t e l y  established 

Where the  s c a l e  of t h e  graphs permits, 
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